
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

1 - 6 Euler for systems and second-order ODEs
Solve by the Euler’s method. Graph the solution in the y1 y2 -− plane. Calculate the errors.

1. y1'[x] = 2 y1[x] -− 4 y2[x],
y2'[x] ⩵ y1[x] -− 3 y2[x], y1[0] ⩵ 3, y2[0] ⩵ 0

Clear["Global`*⋆"]

If both functions that I use have the capability to solve a system of ODEs, that seems remark-
able. The exact case is with
s1 = DSolve[{y1'[x] == 2 y1[x] -− 4 y2[x],

y2'[x] ⩵ y1[x] -− 3 y2[x], y1[0] ⩵ 3, y2[0] ⩵ 0}, {y1, y2}, x]

y1 → Function{x}, ⅇ-−2 x -−1 + 4 ⅇ3 x,

y2 → Function{x}, ⅇ-−2 x -−1 + ⅇ3 x

p1 = Plot[{y1[x] /∕. s1, y2[x] /∕. s1},
{x, -−1, 4}, PlotStyle → {{Blue, Thickness[0.008]},

{RGBColor[0.8, 0.3, 0.2], Thickness[0.008]}}];

It’s particularly satisfying to see that the options which enhance accuracy and precision
work as well for the dual equations as for the individual ones.
s2 = NDSolve[{y1'[x] == 2 y1[x] -− 4 y2[x],

y2'[x] ⩵ y1[x] -− 3 y2[x], y1[0] ⩵ 3, y2[0] ⩵ 0}, {y1, y2}, {x, -−1, 4},
AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20]

y1 → InterpolatingFunction Domain: {{-−1.0000000000000000000, 4.0000000000000000000}}
Output: scalar

,

y2 → InterpolatingFunction

Domain: {{-−1.0000000000000000000, 4.0000000000000000000}}
Output: scalar

p2 = Plot[{y1[x] /∕. s2, y2[x] /∕. s2}, {x, -−1, 4},
PlotStyle → {{White, Thickness[0.004]}, {White, Thickness[0.004]}}];

The plots work exactly like one of the previous problems in section 21.1 or 21.2, only in
duplicate.

Show[p1, p2]

-−1 1 2 3 4

20

40

60

80

100

The values table can easily be adjusted to accommodate four functions. Everything adjusts
and the accuracy between pairs of table columns seems to be 9S or better.
TableForm[Table[

NumberForm[{y1[x] /∕. s1, y1[x] /∕. s2, y2[x] /∕. s1, y2[x] /∕. s2}, {8, 8}],
{x, -−1, 4, 0.4}]]

{{-−5.91753830}, {-−5.91753830}, {-−7.02117670}, {-−7.02117670}}
{{-−1.12487040}, {-−1.12487030}, {-−2.77130530}, {-−2.77130520}}
{{1.78309830}, {1.78309830}, {-−0.67309394}, {-−0.67309394}}
{{4.21529100}, {4.21529100}, {0.55108271}, {0.55108271}}
{{6.98728100}, {6.98728100}, {1.52092460}, {1.52092460}}
{{10.73779200}, {10.73779200}, {2.58294650}, {2.58294650}}
{{16.15999000}, {16.15999000}, {3.99438990}, {3.99438990}}
{{24.17126600}, {24.17126600}, {6.02232370}, {6.02232370}}
{{36.08777700}, {36.08777600}, {9.01273620}, {9.01273610}}
{{53.84943600}, {53.84943500}, {13.45822100}, {13.45822100}}
{{80.33966900}, {80.33966800}, {20.08305800}, {20.08305800}}
{{119.85529000}, {119.85529000}, {29.96298600}, {29.96298600}}
{{178.80424000}, {178.80424000}, {44.70068400}, {44.70068400}}

3. y''[x] +
1

4
y[x] ⩵ 0, y[0] ⩵ 1, y'[0] ⩵ 0

Clear["Global`*⋆"]

This problem is not a system but rather a simple second order ODE.

s1 = DSolvey''[x] +
1

4
y[x] ⩵ 0, y[0] ⩵ 1, y'[0] ⩵ 0, y, x

y → Function{x}, Cos
x

2

p1 = Plot[y[x] /∕. s1, {x, -−5, 5},
PlotStyle → {RGBColor[0.3, 0.7, 0.2], Thickness[0.008]}];

2 21.3 Methods for Systems and Higher Order ODEs 915.nb

s2 = NDSolvey''[x] +
1

4
y[x] ⩵ 0, y[0] ⩵ 1, y'[0] ⩵ 0, y, {x, -−5, 5},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20

y → InterpolatingFunction Domain: {{-−5.0000000000000000000, 5.0000000000000000000}}
Output: scalar

The plot is delivered as expected. Once the equation is solved, everything that follows is
exactly like first order.
p2 = Plot[{y[x] /∕. s2}, {x, -−5, 5}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−4 -−2 2 4

-−0.5

0.5

1.0

The table of comparison values between functions has the close equivalence of a number of
the recent problem solutions.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−5, 5, 0.8}]]

{{-−0.80114362}, {-−0.80114362}}
{{-−0.50484610}, {-−0.50484610}}
{{-−0.12884449}, {-−0.12884449}}
{{0.26749883}, {0.26749883}}
{{0.62160997}, {0.62160997}}
{{0.87758256}, {0.87758256}}
{{0.99500417}, {0.99500417}}
{{0.95533649}, {0.95533649}}
{{0.76484219}, {0.76484219}}
{{0.45359612}, {0.45359612}}
{{0.07073720}, {0.07073720}}
{{-−0.32328957}, {-−0.32328957}}
{{-−0.66627602}, {-−0.66627602}}

5. y''[x] - y[x] == x, y[0] == 1, y'[0] == -2

A problem consisting of another second order ODE.

21.3 Methods for Systems and Higher Order ODEs 915.nb 3

Clear["Global`*⋆"]

Mathematica can solve this one in closed form
s1 = DSolve[{y''[x] -− y[x] ⩵ x, y[0] ⩵ 1, y'[0] ⩵ -−2}, y, x]

{{y → Function[{x}, -−ⅇ-−x (-−1 + ⅇx x)]}}

p1 = Plot[y[x] /∕. s1, {x, -−5, 5},
PlotStyle → {RGBColor[0.7, 0.2, 0.7], Thickness[0.008]}];

as well as in numerical approximation.
s2 = NDSolve[{y''[x] -− y[x] ⩵ x, y[0] ⩵ 1, y'[0] ⩵ -−2}, y, {x, -−5, 5},

AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20]

y → InterpolatingFunction Domain: {{-−5.0000000000000000000, 5.0000000000000000000}}
Output: scalar

p2 = Plot[{y[x] /∕. s2}, {x, -−5, 5}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−4 -−2 2 4

20

40

60

80

And modified with suitable enhancers, the table comparison shows very good correlation
between values of the two functions.

4 21.3 Methods for Systems and Higher Order ODEs 915.nb

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−5, 5, 0.8}]]

{{153.41316000}, {153.41316000}}
{{70.88633100}, {70.88633100}}
{{33.36410000}, {33.36410000}}
{{16.06373800}, {16.06373800}}
{{7.84964750}, {7.84964750}}
{{3.71828180}, {3.71828180}}
{{1.42140280}, {1.42140280}}
{{-−0.05118836}, {-−0.05118836}}
{{-−1.15340300}, {-−1.15340300}}
{{-−2.08919680}, {-−2.08919680}}
{{-−2.95021290}, {-−2.95021290}}
{{-−3.77762920}, {-−3.77762920}}
{{-−4.58994820}, {-−4.58994820}}

7 - 10 RK for systems
Solve by the classical RK

7. The ODE in problem 5. By what factor did the error decrease?

The error is so miniscule that in my opinion there is no need to try to get it to decrease.

9. The system in problem 1.

The system in problem 1 has been solved definitively, I believe.

11. Pendulum equation
y’’[x] + Sin[y[x]] == 0, y[π] == 0, y’[π] == 1, as a system, 20 steps. How does your
result fit into figure 93 in section 4.5?

Clear["Global`*⋆"]

I think I see how this could be treated as a system, with sine handled as a separate function.
But it was easier to try to solve it monolithically first, and it worked. The text answer page
does not show a result for the solution function y[x]. I am only assuming that Mathematica
got it right.
eqn = {y''[x] + Sin[y[x]] ⩵ 0, y[π] ⩵ 0, y'[π] ⩵ 1}

{Sin[y[x]] + y′′[x] ⩵ 0, y[π] ⩵ 0, y′[π] ⩵ 1}

s1 = Simplify[DSolve[{y''[x] + Sin[y[x]] ⩵ 0, y[π] ⩵ 0, y'[π] ⩵ 1}, y, x]]

y → Function{x}, 2 JacobiAmplitude
1

2
(-−π + x), 4

I’m not sure if the following constitutes a successful check of the DSolve activities, but it
may.

21.3 Methods for Systems and Higher Order ODEs 915.nb 5

eqn /∕. s1

-−2 JacobiCN
1

2
(-−π + x), 4 JacobiSN

1

2
(-−π + x), 4 +

Sin2 JacobiAmplitude
1

2
(-−π + x), 4 ⩵ 0, True, True

p1 = Plot[y[x] /∕. s1, {x, -−5, 5},
PlotStyle → {RGBColor[0.8, 0.7, 0.2], Thickness[0.008]}];

s2 = NDSolve[{y''[x] + Sin[y[x]] ⩵ 0, y[π] ⩵ 0, y'[π] ⩵ 1}, y, {x, -−5, 5},
AccuracyGoal → 16, PrecisionGoal → 16, WorkingPrecision → 20]

y → InterpolatingFunction Domain: {{-−5.0000000000000000000, 5.0000000000000000000}}
Output: scalar

p2 = Plot[{y[x] /∕. s2}, {x, -−5, 5}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−4 -−2 2 4

-−1.0

-−0.5

0.5

1.0

The Simplify command I used in the definition of s1 did not do as I had hoped. It did not
eliminate the phantom imaginary Arg from the function values of s1. These would show up
in the table without the exclusionary Re command on s1. I feel fairly confident in stripping
Arg, since all the Arg values are far less than default Chop. The comparison of the remain-
ing real parts shows an agreeably close equivalence.

6 21.3 Methods for Systems and Higher Order ODEs 915.nb

TableForm[
Table[NumberForm[{Re[y[x]] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−5, 5, 0.8}]]

{{-−1.01161520}, {-−1.01161520}}
{{-−0.56405817}, {-−0.56405817}}
{{0.20005255}, {0.20005255}}
{{0.84859892}, {0.84859892}}
{{1.04140840}, {1.04140840}}
{{0.69811386}, {0.69811386}}
{{-−0.02990360}, {-−0.02990360}}
{{-−0.74057792}, {-−0.74057792}}
{{-−1.04584740}, {-−1.04584740}}
{{-−0.81332394}, {-−0.81332394}}
{{-−0.14112048}, {-−0.14112048}}
{{0.61277079}, {0.61277079}}
{{1.02486590}, {1.02486590}}

21.3 Methods for Systems and Higher Order ODEs 915.nb 7

